Reg.					No.

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2024 and later)

PROGRAMME AND BRANCH: B.Sc., STATISTICS

SEI	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
II	PART-III	CORE-3	U24ST203	MATRIX AND LINEAR ALGEBRA

Date	& Sessi	ion: 28	.04.2025/FN Time: 3 ho	urs Maximum: 75 Marks		
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (10 X 1 = 10 Marks)</u> Answer <u>ALL Questions.</u>			
CO1	K1	1.	, , -	that AB = BA = I, then B is: b) Inverse of A d) Diagonal matrix		
CO1	K2	2.	I '	ngular matrix is equal to: b) Product of diagonal elements d) Identity matrix		
CO2	K1	3.	,	: b) A ^T A= 0 d) det(A)=0		
CO2	K2	4.	Cramer's Rule is used to solve wha) Homogeneous linear systems of b) Non-homogeneous linear systems of c) Non-linear systems of equations d) Both homogeneous and non-homogeneous and non-homogeneous and systems of control of the con	nly ms only s		
CO3	K1	5.	The rank of a matrix is defined as a) The number of rows in the matrix b) The number of columns in the c) The number of non-zero rows in	rix.		
CO3	K2	6.	, , ,	nverse can be computed using: b) Only column operations. d) Elementary column operations		
CO4	K1	7.	The column rank of a matrix is: a) The number of linearly independ b) The number of linearly independ c) The number of columns in the d) The number of rows in the mat	ndent columns in the matrix. matrix rix		
CO4	K2	8.	Which of the following is true aborank? a) Row rank changes when elements b) Row rank is unaffected by elementary row operations incred) Elementary row operations reduced.	nentary row operations rease the row rank		

_	T .	Т	
CO5	K1	9.	What does the Cayley-Hamilton theorem state?
			a) Every square matrix is diagonalizable.
			b) The matrix satisfies its own characteristic equation
			c) The matrix is invertible if its characteristic polynomial has no real
			roots
007	***	4.0	d) The determinant of the matrix is equal to the trace of the matrix.
CO5	K2	10.	Which of the following is true about the characteristic values
			(eigenvalues) of a matrix?
			a) The characteristic values are always real numbers.
			b) The characteristic values are the roots of the characteristic
			polynomial.
			c) The characteristic values are always equal to the trace of the matrix
43	,A		d) The characteristic values are the diagonal elements of the matrix
Course Outcome	Bloom's K-level	Q.	<u>SECTION - B (5 X 5 = 25 Marks)</u>
Course Jutcom	Bloom's K-level	No.	Answer ALL Questions choosing either (a) or (b)
O O	E X		
CO1	КЗ	11a.	Compute the value of b if the matrix given below is a singular matrix
			$A = \begin{pmatrix} 9 & b \\ 6 & 2 \end{pmatrix}$
CO1	КЗ	11b.	• -
			(OR)
CO2	1/2	10-	Explain Singular and Non-singular matrix with example
CO2	КЗ	12a.	Find the product of two matrix if $A = \begin{bmatrix} 5 & 7 & 1 \\ 2 & 9 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 7 & 2 \\ 1 & 3 & 2 \end{bmatrix}$
CO2	КЗ	12b.	Find the product of two matrix if $A=\begin{bmatrix} 2 & 9 & 3 \\ 2 & 5 & 7 \end{bmatrix}$, $B=\begin{bmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \end{bmatrix}$
			(OR)
			[2 4 -6]
			Compute the inverse of the matrix A= 7 3 5
CO2	TZ A	12-	
CO3	K4	13a.	Compute rank by using elementary transformation $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \end{bmatrix}$
CO3	K4	13b.	Compute rank by using elementary transformation A=[2 3 5 1] [1 3 4 5]
			(OR)
			Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$
			Find the rank of the matrix A= 2 3 4
CO4	TZ A	1/-	Determine the whether the resters (5, 0, 4), (0, 0, 5), (4, 5, 7)
CO4	K4	14a.	Determine the whether the vectors (5, -2, 4), (2, -3, 5), (4, 5, -7) are
CO4	K4	14b.	linearly independent or dependent
		- 1.0.	(OR) Determine the dimension, and a basis for the row space of the matrix
			$\begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$
			$B = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \end{vmatrix}$
CO5	K5	15a.	List the Properties of Eigen Values
(4 == -	(OR)
CO5	K5	15b.	Discuss about characteristics roots and characteristic vectors
e 1e	s –		

Course	Bloom's	Q.	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$
Outcome	K-level	No.	
CO1	КЗ	16a.	Define a matrix and explain the types of matrices with examples. (OR)

CO1	К3	16b.	If $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ show that (A-I) (A-4I = O. Hence evaluate the matrix $A^3 = A$
CO2	K4	17a.	Discuss the orthogonal and Unitary matrices with examples
CO2	K4	17b.	Identify the adjoint and reciprocal matrices of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$
CO3	K4	18a.	Solve the following equations and hence find the equations are
CO3	K4	18b.	x + y + z = 6, $x + 2y + 3z = 14$, $x + 4y + 7z = 30$ consistent. (OR) Explain the concept of the rank of a matrix and discuss its properties. How is it related to the row echelon form (REF) of a matrix?
CO4	K5	19a.	Examine, if the given vectors $\sim u=(1,0,0,3)$, $\sim v=(0,1,-2,0)$, $\sim w=(0,-1,-2,0)$
CO4	K5	19b.	1,1,1) are linearly independent. If possible, express ~z=(2,-3,2,-3) as a linear combination of ~u, ~v and ~w. (OR) Define a vector space and explain its properties
CO5	K5	20a.	Elucidate the proof Cayley-Hamilton theorem
CO5	K5	20b.	Diagonalize the matrix $\begin{bmatrix} 1 & -1 & -2 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$